Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Synth Biol ; 13(4): 1142-1151, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38568420

ABSTRACT

The metabolic engineering of microbes has broad applications, including biomanufacturing, bioprocessing, and environmental remediation. The introduction of a complex, multistep pathway often imposes a substantial metabolic burden on the host cell, restraining the accumulation of productive biomass and limiting pathway efficiency. One strategy to alleviate metabolic burden is the division of labor (DOL) in which different subpopulations carry out different parts of the pathway and work together to convert a substrate into a final product. However, the maintenance of different engineered subpopulations is challenging due to competition and convoluted interstrain population dynamics. Through modeling, we show that dynamic division of labor (DDOL), which we define as the DOL between indiscrete populations capable of dynamic and reversible interchange, can overcome these limitations and enable the robust maintenance of burdensome, multistep pathways. We propose that DDOL can be mediated by horizontal gene transfer (HGT) and use plasmid genomics to uncover evidence that DDOL is a strategy utilized by natural microbial communities. Our work suggests that bioengineers can harness HGT to stabilize synthetic metabolic pathways in microbial communities, enabling the development of robust engineered systems for deployment in a variety of contexts.


Subject(s)
Microbial Consortia , Microbiota , Gene Transfer, Horizontal , Metabolic Engineering , Genomics
2.
Nat Commun ; 15(1): 1449, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365845

ABSTRACT

Horizontal gene transfer (HGT) and gene duplication are often considered as separate mechanisms driving the evolution of new functions. However, the mobile genetic elements (MGEs) implicated in HGT can copy themselves, so positive selection on MGEs could drive gene duplications. Here, we use a combination of modeling and experimental evolution to examine this hypothesis and use long-read genome sequences of tens of thousands of bacterial isolates to examine its generality in nature. Modeling and experiments show that antibiotic selection can drive the evolution of duplicated antibiotic resistance genes (ARGs) through MGE transposition. A key implication is that duplicated ARGs should be enriched in environments associated with antibiotic use. To test this, we examined the distribution of duplicated ARGs in 18,938 complete bacterial genomes with ecological metadata. Duplicated ARGs are highly enriched in bacteria isolated from humans and livestock. Duplicated ARGs are further enriched in an independent set of 321 antibiotic-resistant clinical isolates. Our findings indicate that duplicated genes often encode functions undergoing positive selection and horizontal gene transfer in microbial communities.


Subject(s)
Gene Transfer, Horizontal , Genes, Bacterial , Humans , Genes, Bacterial/genetics , Gene Transfer, Horizontal/genetics , Bacteria/genetics , Drug Resistance, Microbial/genetics , Anti-Bacterial Agents/pharmacology
3.
bioRxiv ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37873187

ABSTRACT

The metabolic engineering of microbes has broad applications, including in biomanufacturing, bioprocessing, and environmental remediation. The introduction of a complex, multi-step pathway often imposes a substantial metabolic burden on the host cell, restraining the accumulation of productive biomass and limiting pathway efficiency. One strategy to alleviate metabolic burden is division of labor (DOL), in which different subpopulations carry out different parts of the pathway and work together to convert a substrate into a final product. However, the maintenance of different engineered subpopulations is challenging due to competition and convoluted inter-strain population dynamics. Through modeling, we show that dynamic division of labor (DDOL) mediated by horizontal gene transfer (HGT) can overcome these limitations and enable the robust maintenance of burdensome, multi-step pathways. We also use plasmid genomics to uncover evidence that DDOL is a strategy utilized by natural microbial communities. Our work suggests that bioengineers can harness HGT to stabilize synthetic metabolic pathways in microbial communities, enabling the development of robust engineered systems for deployment in a variety of contexts.

4.
Methods Mol Biol ; 2489: 239-267, 2022.
Article in English | MEDLINE | ID: mdl-35524054

ABSTRACT

The enzymes that comprise type II polyketide synthases (PKSs) are powerful biocatalysts that, once well-understood and strategically applied, could enable cost-effective and sustainable access to a range of pharmaceutically relevant molecules. Progress toward this goal hinges on gaining ample access to materials for in vitro characterizations and structural analysis of the components of these synthases. A central component of PKSs is the acyl carrier protein (ACP), which serves as a hub during the biosynthesis of type II polyketides. Herein, we share methods for accessing type II PKS ACPs via heterologous expression in E. coli . We also share how the installation of reactive and site-specific spectroscopic probes can be leveraged to study the conformational dynamics and interactions of type II PKS ACPs.


Subject(s)
Acyl Carrier Protein , Polyketide Synthases , Acyl Carrier Protein/genetics , Acyl Carrier Protein/metabolism , Escherichia coli/metabolism , Polyketide Synthases/genetics
5.
Biochemistry ; 61(4): 217-227, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35073057

ABSTRACT

The strategic redesign of microbial biosynthetic pathways is a compelling route to access molecules of diverse structure and function in a potentially environmentally sustainable fashion. The promise of this approach hinges on an improved understanding of acyl carrier proteins (ACPs), which serve as central hubs in biosynthetic pathways. These small, flexible proteins mediate the transport of molecular building blocks and intermediates to enzymatic partners that extend and tailor the growing natural products. Past combinatorial biosynthesis efforts have failed due to incompatible ACP-enzyme pairings. Herein, we report the design of chimeric ACPs with features of the actinorhodin polyketide synthase ACP (ACT) and of the Escherichia coli fatty acid synthase (FAS) ACP (AcpP). We evaluate the ability of the chimeric ACPs to interact with the E. coli FAS ketosynthase FabF, which represents an interaction essential to building the carbon backbone of the synthase molecular output. Given that AcpP interacts with FabF but ACT does not, we sought to exchange modular features of ACT with AcpP to confer functionality with FabF. The interactions of chimeric ACPs with FabF were interrogated using sedimentation velocity experiments, surface plasmon resonance analyses, mechanism-based cross-linking assays, and molecular dynamics simulations. Results suggest that the residues guiding AcpP-FabF compatibility and ACT-FabF incompatibility may reside in the loop I, α-helix II region. These findings can inform the development of strategic secondary element swaps that expand the enzyme compatibility of ACPs across systems and therefore represent a critical step toward the strategic engineering of "un-natural" natural products.


Subject(s)
Acyl Carrier Protein/metabolism , Escherichia coli Proteins/metabolism , Fatty Acid Synthases/metabolism , Polyketide Synthases/metabolism , Acyl Carrier Protein/chemistry , Amino Acid Sequence , Chimera/metabolism , Escherichia coli/enzymology , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Fatty Acid Synthase, Type II/metabolism , Fatty Acid Synthases/chemistry , Fatty Acids/metabolism , Molecular Dynamics Simulation , Polyketide Synthases/chemistry , Polyketides/metabolism , Surface Plasmon Resonance/methods , Transferases (Other Substituted Phosphate Groups)/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...